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Pulsed nuclear magnetic resonance (NMR) techniques were used to find nuclear magnetic moments
of hydrogen and fluorine as well as the spin-lattice relaxation time T1 and the spin-spin relaxation
time T2 for different viscosities of glycerine. The nuclear magnetic moment of hydrogen was found
to be (1.4099± .0048) ∗ 10−26 Joules/Tesla and the nuclear magnetic moment of fluorine was found
to be (1.4094±0.0056)∗10−26 Joules/Tesla. T1 values were found using a the three pulse sequence,
but our data was poor. T2 value were successfully measured using the Carr-Purcell pulse sequence
and a negative linear relationship on a log-log plot of T2 versus viscosity for different viscosities
of glycerine was found. In all cases, expected free induction decay and spin echo behavior was
observed.

1. INTRODUCTION

Nuclear magnetic resonance (NMR) was developed in-
dependently by Felix Bloch and Edward Purcell. In 1952
they shared the Nobel Prize for their discoveries. Nuclear
magnetic resonance uses a small magnetic field oscillating
at radio frequencies to excite a sample with nuclear mag-
netic moments that are nominally aligned with a large
static electric field. NMR techniques have a wide variety
of applications, including precision magnetic field mea-
surement and magnetic resonance imaging (MRI). In this
experiment, we use NMR to find the nuclear magnetic
moments of hydrogen and fluorine and the spin-lattice
relaxation time T1 and the spin-spin relaxation time T2

for different viscosities.

2. BACKGROUND AND THEORY

2.1. Classical Model of Larmor Precession

We first consider a particle with spin angular momen-
tum |~S| = S~ and magnetic dipole ~µ = γ~S in a static
magnetic field ~Bo, as shown in figure 1. Bloch showed
that the ensemble average of many quantum mechanical
systems follows the same laws as a classical mechanical
system.[1]. Our samples contain a large number of nuclei,
so a classical model will be sufficient to describe this phe-
nomenon. Letting θ be the angle between ~B0 and ~µ, we
set the torque due to ~Bo equal to the change in angular
momentum I to obtain the precession frequency w0,

|τ | = |~µ× ~Bo| = |γ~S × ~B0| = γSB0 sin θ (1)

|τ | = |d
~S

dt
| = S sin θω0 ⇒ ω0 = γB0 (2)
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FIG. 1: Diagram of the configuration for the classical model
of spin precession.

2.2. Bloch Sphere Representation

Like a bit is the basic unit of computer information,
the qubit is the basic unit of quantum information. Qubit
states |ψ〉 are states of a two-level quantum mechani-
cal system with respect some observable, and can be ex-
pressed as the linear superposition of the eigenstates of
the observable operator. If the two eigenstates are |+〉
and |−〉, without loss of generality we can express |ψ〉 as,

|ψ〉 = cos (
θ

2
)|−〉+ eiφ sin (

θ

2
)|+〉, (3)

as we require that 〈ψ|ψ〉 = 1, and because we can only
observe 〈ψ|ψ〉, only the difference in phase between the
two components φ is relevant.

A wave function with a particular θ and φ corre-
sponds to the point (cosφ sin θ, sinφ sin θ, cos θ) on the
unit sphere. This representation can help us visualize
|φ〉 in space.
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FIG. 2: Diagram of the Bloch sphere representation, illus-
trating how we can consider each qubit state in our sample
to be a vector (cosφ sin θ, sinφ sin θ, cos θ) on the unit sphere.
Image from Wikipedia.

2.3. Quantum Mechanical Description of Nuclear
Magnetic Resonance

The quantum mechanical description of a particle with
spin angular momentum in a magnetic field[2] is similar
to the classical description. Intead of a spin vector, we
have a spin operator Ŝ = (Ŝx, Ŝy, Ŝz) that acts on the
particle’s wave function |ψ〉. The magnetic dipole mo-
ment is ~µ = γŜ. For nuclear magnetic resonance, we
have the static magnetic field ~Bo, and we apply an addi-
tional time-oscillating circularly polarized magnetic field
~B1, perpendicular to ~B0. In coordinates, we can express
the net magnetic field and Hamiltonian Ĥ = ~µ · ~B(t) in
the lab frame,

~B(t) = (B1 coswt,−B1 sinwt,B0) (4)

ˆH(t) = −γB0Ŝz − γB1(Ŝx cosωt− Ŝy sinωt) (5)

Using the rotation operator e−iωtŜz/~ we express ˆH(t)
as,

ˆH(t) = eiωtŜz/~(−γBoŜz − γB1Ŝx)e−iωtŜz/~ (6)

Therefore, if we consider the system in the frame rotat-
ing about the z axis at angular frequency ω, the rotated
Hamiltonian Ĥ = −γB0Ŝz−γB1Ŝx is time independent.
We express the particle’s wave function in the rotating
frame |ψrot〉 as,

|ψrot〉 = e−iωtŜz/~|ψ(t)〉 (7)

Schrödinger’s equation in the rotated frame becomes,

i~
d

dt
|ψrot(t)〉 = −γ ~Beff · Ŝ|ψrot〉

where,

~Beff = (B0 −
ω

γ
)êz +B1êx

If ω0 = ω, that is, if ω is tuned to the resonant frequency
of the particle (same as the Larmor frequency calculated
earlier), Schrödinger’s equation becomes,

i~
d

dt
|ψrot〉 = −γB1Ŝx|ψrot(t)〉

and we have precession in the (z, ψrot) plane with
frequency γB1. The rotated Hamiltonian is time-
independent, so to calculate what happens to |ψrot〉 if
we turn on B1 at the resonant frequency for time ∆t, we
can simply apply the time evolution operator,

|ψrot(∆t)〉 = e−iω0∆tSz/~|ψrot(0)〉

In this experiment we will need to rotate the ensemble
average of the spins by π/2 and π degrees. We will pick
pulse durations such that ω0∆tSz/~ = γB1∆t = π/2, π.
We refer to these as π/2 or 90o pulses and π or 180o
pulses.

2.4. Definition of The Spin-Lattice Relaxation
Time T1 and the Spin-Spin Relaxation Time T2

Quantum mechanically, atomic nuclei may only be in
one of two spin states: up or down, written as |+〉 or
|−〉. From the canonical ensemble in statistical physics,
in thermal equilibrium, the probability that a given spin
is in state |+〉 or |−〉 is P (±) = eE±/kT /Z, where E±
is the energy associated with the two states, k is Boltz-
mann’s constant, T is the temperature and Z is the parti-
tion function.[3] T1 is a measure of how quickly the nuclei
transfer energy to their surroundings. Once excited with
a RF burst, the spin distribution will “cool’ back to the
original Boltzmann distribution exponentially with time
constant T1. From Stichter[4], if n0 is the initial popu-
lation difference between the excited and unexcited dis-
tributions, and n(t) is the population difference at time
t,

n(t) = n0(1− e−t/T1) (8)

Whereas the spin-lattice relaxation time T1 is the time
constant associated return to the equilibrium magnetiza-
tion in the longitudinal (z) direction, the spin-spin re-
laxation time T2 is the time constant associated with
the magnetization decay in the transverse (x or y) direc-
tions. When the magnetic moments are rotated into the
x − y plane, they are initially in phase and have a net
magnetic moment. However, due to spin-spin coupling,
they eventually fall out of phase and thus produce no net
magnetic moment. The rate of decay of the net magnetic
moment in either the x or y directions is given in terms
of T2 as,

dMx,y

dt
= γ( ~M × ~B)x,y −

Mx,y

T2
(9)
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FIG. 3: Block digram of experimental setup. Components
that provide the RF bursts to the sample are shown in pink,
signal detection components are shown in blue.

3. EXPERIMENT

3.1. General Setup

A large solenoid creates the large magnetic field B0,
and a small solenoid two centimeters long, wound with 10
turns of copper wire creates the weak oscillating field with
frequency ω. We apply the weak oscillating field in short
radio frequency (RF) pulses that rotate the ensemble av-
erage of the magnetic moment by a specified amount.
This method is adventageous, because it allows us to sep-
arate the detection phase from the RF burst phase and
use the solenoid to perform both. This method is essen-
tially the same method that Bloch describes in his 1946
paper.[5] Figure 3 shows how we do this in practice. First,
in the RF burst phase, the solenoid rotates the magnetic
moment so that it has some component in the x−y plane,
where the large constant magnetic field B0 causes it to
precess at the Larmor frequency ω0 = γB0. Then, in the
detection phase, the precessing magnetic field creates an
alternating magnetic flux inside the solenoid, which by
Faraday’s law of induction induces an RF voltage in the
solenoid. ω0 is too high for us to observe directly on the
oscilliscope, so we mix the induced voltage signal with
the function generator frequency ω which is very close,
to produce a beat frequency |γB0 − ω|.

For the RF pulse part of our setup, a 15 MHz func-
tion generator passes through a power splitter to an RF
switch. The digital pulse programmer sends the RF
switch TTL logic that controls when the switch lets the
function generator signal through. This signal then goes
to the RF power applifier. When some component of
the magnetic moments of the sample are rotated into
the x − y plane, the changing magnetic field produces
a signal that decays exponentially as the phases of all
the rotating magnetic moments decohere and eventually
produce no net effect. This signal is called a free in-
duction decay and is shown in figure 4. If the magnetic
moments are rotated exactly 180o, they will not precess
about the z axis and we expect to see no signal. Experi-
mentally, due to magnetic field inhomogeneity and other
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FIG. 4: Sample signal from a free induction decay. Approxi-
mate time of the pulse is indicated.

imperfections, we cannot perfectly rotate the net mag-
netic moment 180o, so we do see some signal after a 180o
rotation. To come as close as possible to a 180o pulse, we
tune both B1 by changing the amplitude output by the
function generator and ∆t by programming the Digital
Pulse Programmer to minimize the free induction decay.
We use 1.250 V peak to peak for the amplitude of the
function generator, 50 ms for the 180o pulse width, and
50/2 = 25 ms for the 90o pulse width.

3.2. Nuclear Magnetic Moments of Hydrogen and
Fluorine

We find the frequency range with clear beats (close to
resonance) and then vary the frequency to the frequency
in that range where the beats disappear. By finding the
ω such that ω = γB0 we can find the nuclear magnetic
moment of our sample. We found the magnetic moments
of both hydrogen and fluorine by finding the resonant fre-
quencies of glycerine and hexafluorobenzene, as the sig-
nals from the magnetic moments of hydrogen and fluorine
are dominant in those molecules. For each sample, we
took 5 statistically independent measurements of these
frequency values by detuning and retuning the frequency.
Also, the large magnet that produced ~B0 had different
magnetic field settings for hydrogen and fluorine. Using
a gaussmeter that we calibrated beforehand, we took 5
statistically independent measurements of the magnetic
field for both of the settings. From this information, we
could calculate the nuclear magnetic moments.

3.3. Measurement of the Spin-Lattice Relaxation
Time T1

Recall that the spin-lattice relaxation time T1 is the
time constant for a spin distribution’s return to its nor-
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FIG. 5: Sample signal after the 90o-T-180o sequence in a 3
pulse sequence. Approximate times of the 90o and 180o pulses
are indicated.

mal Boltzmann distribution after being perturbed. We
determine T1 by using a three pulse sequence. First
we invert the population by applying a 180o pulse that
causes the spins to precess so that they point opposite
~B0. That is, we move the ensemble ~µ average to point
in the −ẑ directon. Then we wait time τ and let some
of the energy from the perturbation be coupled out to
the sample’s surroundings. Finally, we perform a 90o-T-
180o sequence to determine how many of the spins have
returned to the |+ z〉 state. If a population of spins has
returned to the |+ z〉 state, the 90o pulse will rotate the
ensemble average into the x− y plane, and we will see a
free induction decay on the oscilloscope as the phases de-
cohere. Then, after a short time T, the 180o pulse rotates
the spins from the x−y plane, back to the x−y plane and
reverses all of the phases. T is kept small to minimize T2

effects, which is one of the advantages of this particular
sequence. This causes the phases to evolve backwards in
time so that they recohere and decohere again, causing
the oscilloscope signal to rise and then fall again. This
phenomenon is called a spin echo. A sample oscilliscope
trace from a three pulse sequence is shown in figure 5. In
the three pulse sequence, the heights of the spin echoes
are proportional to the number of spins that have re-
turned to the |z+〉 state, so we measure these as a func-
tion of τ . We measured the pulse heights as a function
of τ for 88%, 92%, 96% and 100% glycerine in aqueous
solution, corresponding to viscosities of 150, 310, 644 and
1410 centiPoise/(mPa*s). Assuming that we were taking
our measurements at 20o C room temperature, we found
the viscosities that corresponded to those concentrations
from a chart given in the labguide[1]. No viscosity value
was given for 88% concentration, so we extrapolated that
value by looking at viscosity versus τ in that region. We
also did the measurement for a paramagnetic ion in water
solution of 1017 Fe+++ atoms/cc.

Exponentially Decaying Echo Train

90o Pulse, Free Induction Decay

Repeated 180o Pulses

FIG. 6: Sample oscilloscope display for a Carr-Purcell pulse
sequence. First a 90o pulse is applied to rotate the magnetic
moments into the x−y plane. Then, repeated 180o pulses are
applied, which cause spin echoes that measure magnetization
in the x− y plane.

3.4. Measurement of the Spin-Spin Relaxation
Time T2: The Carr-Purcell Technique

Recall that T2 is the time constant for magnetization
decay in the x− y plane. We determine T2 by using the
Carr-Purcell technique[6], which is a good technique es-
pecially for measuring longer T2 times, as it minimizes
diffision effects. We first rotate the magnetic field of the
sample into the x − y plane, then we wait time τ , and
then apply a series of 180o pulses, seperated by time 2τ .
The 180o pulses repeatedly time reverse the decoherence
in the x − y plane Between the series of 180o pulses, we
see spin echoes with height proportional to the magneti-
zation in the x − y plane. So, we expect the spin echo
heights to decay exponentially with time constant T2.
A sample oscilloscope display for a Carr-Purcell pulse se-
quence is shown in figure 6. We perform the Carr-Purcell
sequence for 88%, 92%, 96% and 100% glycerine in aque-
ous solution, corresponding to viscosities of 150, 310, 644
and 1410 centiPoise/(mPa*s). To find the amplitudes of
the spin echoes, we take bitmap images of the oscilloscope
display and use image editing software to map pixels to
voltages.

From Slichter[4], we find the relationship between the
magnetization and the number of 180o pulses,

M(n2τ) = M0e
−γ ∂H∂z

2
D(n2τ) 1

3 τ
2
e
−n2τ
T2 (10)

The first exponential is a second order effect, because the
argument is proportinal to τ2, so we ignore it and fit to
the second exponential.
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4. DATA AND ANALYSIS

4.1. Magnetic Moments

First, we solve for the magnetic moment µ in terms of
our measured variables ω0 and B0,

ω0 = γB0 =
µ

I~
B0 ⇒ µ =

ω0I~
B0

=
πν0~
B0

(11)

For hydrogen, we measured ν0 to be 7.52203±0.00002 Hz
and B0 to be 0.17676± 0.0006 Tesla. We calculated µ to
be (1.4099± .0048)∗10−26 Joules/Tesla. This is approxi-
mately 3 standard deviations from µ = 1.4131 ∗ 10−26

Joules/Tesla calculated from values given in the lab
guide. We only found the statistical errors, and our val-
ues were statistically well-determined, so our errors were
extremely small. Inhomogeneity in B0 is a good candi-
date for systematic error. In the future, we should take
measurements that determine how much we can expect
B0 to vary over the distance range our sample occupies.

For fluorine, we measured ν0 to be 7.52224±0.00005 Hz
and B0 to be 0.17676± 0.0006 Tesla. We calculated µ to
be (1.4094± 0.0056) ∗ 10−26 Joules/Tesla. The presently
accepted value of µ, obtained from webelements.com[7],
is 1.3278 ∗ 10−26 Joules/Tesla. Given our ν0 uncertainty
for fluorine, our µ value is very far away from the ac-
cepted value. Also, our µ value is suspiciously close to
the µ we calculated for hydrogen. Perhaps some of the
test tubes in the sample rack were switched and we were
looking at the wrong sample. This is another question to
investigate.

4.2. Spin-Lattice Relaxation Time T1

We measured the spin echo height in the three pulse
sequence as a function of τ . We did the three pulse se-
quence slightly off resonance, so we saw several oscilla-
tions in the spin echo, as shown in figure 5. To find the
spin echo height, we found the height of the oscillation
with the highest amplitude within the envelope. The raw
data was exported from the oscilloscope directly to the
computer. To find the statistical error on the spin echo
height, we saved the oscilloscope output for 88% glycer-
ine 5 different times and found the standard deviation of
the heights to be 11.15%. The 5 different amplitudes near
the peak as a function of data point number are shown in
figure 7. We assumed that the other amplitudes that we
measured would also have 11.15% error. To reduce error,
we could better determine the pulse amplitude by mea-
suring the oscilliscope output 5 different times for every
τ value and sample.

For each of the samples, we fit our amplitude versus τ
data to the function A(1 − e−τ/T1) and found T1. The
fit for 310 cP/(mPa*s) glycerine is shown in figure 8.
For all of our amplitude versus τ plots, the shape of our
theoretical function clearly does not match the shape of
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FIG. 7: 5 different measurements of amplitude near the peak
of the three pulse sequence spin echo, for 88% glycerine.
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FIG. 8: Exponential fit to determine T1 in 310 cP/mPas glyc-
erine, a 92% aqueous solution. The fit does not follow the
shape of the data, and the residuals have a very clear struc-
ture, indicating that the data does not follow the theoretially
predicted function.

our data. This is particularly evident in our residuals, as
they have very clear structure.

The T1 values that we measured for the different vis-
cosities are listed in table I. Our results do not agree with
Bloembergen’s[8] results. Bloembergen shows a negative
linear relationship on a log-log plot of T1 versus viscosity
and over the viscosity range we are considering, Bloem-
bergen finds that T1 varies by an order of magnitude,
whereas our T1 values do not very much at all. We also
expect our T1 values to monotonically decrease as a func-
tion of viscosity, but that is not the case.

Viscosity (Cp/mPas) T1 (ms)

150 20.2945± 1.0425

310 18.1191± 1.1684

624 19.0877± 0.5998

1410 8.9033± 0.5979

TABLE I: T1 values measured for different viscosities of glyc-
erine. These results do not agree with Bloembergen[8].
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FIG. 9: Exponential fit to determine T1 in 1017 Fe+++/cc
solution. As for the exponential fit for glycerine, the fit does
not follow the shape of the data, and the residuals have a very
clear structure, indicating that the data does not follow the
theoretically predicted function.

For 1017 Fe+++ ions/cc, the exponential fit for ampli-
tude versus τ , shown in figure 9, was also poor, as the
fit did not follow the shape of the data and the residuals
had clear structure. In the future, we wish to find the
T1 values for different paramagnetic ion concentrations
so we can establish a relationship.

4.3. Spin-Spin Relaxation Time T2

We used to the Carr-Purcell sequence to determine the
spin-spin relaxation time T2. We found the echo heights
by taking a bitmap image screen shot of the oscilloscope
trace and looking at it in image editing software. For
the error in echo amplitudes, we added in quadrature
the statistical variation found earlier the error in pixel
determination and the error in oscilloscope resolution. To
find T2 we fit exponential functions Ae−t/T2 to our data.
Figure 10 shows the fit for 310 cP/(Pa*s) glycerine. Our
fits to determine T2 followed the data and had reduced
chi-squared values close to 1. The errors on T2 were
determined by the fitting algorithm.

We plotted T2 as a function of viscosity and found a
negative linear relationship on a log-log plot, in agree-
ment with Bloembergen[8]. We used error propogation
methods to find our errors on the log-log plot, given our
errors on T2. Qualitatively, it makes sense that T2 should
decrease as a function of viscosity, because the molecules
in more viscous fluids are more strongly coupled to each
other.

Given time constraints, we were not able to find expo-
nentially decreasing echos for different concentrations of
paramagnetic ions.
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FIG. 10: Exponential fit to determine the spin-spin relaxation
time of 310 cP/(Pa*s) glycerine, a 92% aqueous solution. The
fit follows the shape of the data and our reduced chi-squared
value is close to 1, indicating reasonable errors.
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FIG. 11: Spin-spin relaxation time T2 as a function of viscos-
ity.

5. SOURCES OF LARGE ERROR IN T1

DETERMINATION

Our values for T1 are far from the values in the lit-
erature, they do not follow the trend as a function of
viscosity that we would expect, and the exponential fits
that determined them were poor. The errors that we cal-
culated do not explain these differences. We now suggest
errors in experimental procedure and analysis technique
that could have produced these discrepancies. One pos-
sibility is that our pulse widths were not tuned correctly.
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For our 180o pulse settings, when we varied B1 and ∆t
in either direction, we saw the amplitude of the free in-
duction decay increase, so we were reasonably confident
that we picked the right amplitude and time. However,
we could be more sure if we actually plotted the 180o
free induction decay amplitude as a function of time and
as a function of amplitude and verified that we were op-
erating at the minimum. Another problem was our fit
algorithm that was supposed to fit our data to the func-
tion A(1 − e−t/T1). We used the “levmar” Matlab file
from the Junior Lab website, which is an implementation
of the Levenberg-Marquardt algorithm. This algorithm
takes some initial values for the A and T1 parameters and
searches for the local chi-squared minimum. When do-
ing the fits, we there appeared to be many closely-spaced
local minima. Small variations in the initial parameters
would give us completely different values for T1. We
suspect that this effect occured because our data itself
was bad and did not follow the shape of the theoretical
function. Therefore, none of the fits were particularly
good. However, it is definitely still something to inves-
tigate further. Perhaps in the future we can try using a
more robust algorithm. Finally, the most likely reason
for our poor T1 results was that the three pulse sequence
requires us to operate almost directly on resonance. We
made the mistake of moving our function generator off
resonance because we thought we could get a better value
for the amplitude of the echo if we were looking at a wide
envelope of oscillations. However, the wide envelope of
oscillations for both the free induction decay after the

90o pulse and the spin echo after the 180o pulse makes
observations confusing because the free induction decay
and the echo can sometimes overlap.

6. CONCLUSIONS

In this experiment, we measured the nuclear mag-
netic moment of hydrogen to be (1.4099± .0048) ∗ 10−26

Joules/Tesla and the nuclear magnetic moment of flu-
orine to be (1.4094 ± 0.0056) ∗ 10−26 Joules/Tesla. We
attempted to measure the spin-lattice relaxation time T1

using the three pulse sequence, but our data was poor,
probably because our frequency generator was set some-
what off resonance. We succesfully measured the spin-
spin relaxation time T2 by using the Carr-Purcell pulse
sequence, and found a negative linear relationship on a
log-log plot of T2 versus viscosity for different viscosi-
ties of glycerine. In all cases, we see qualitatively the
expected free induction decay and spin echo behavior.

Later this term we will have an opportunity to: dou-
ble check our magnetic moment measurements, refine our
pulse width tuning, take more statistically independent
measurements of echo heights to better constrain our
values and determine statistical error, experiment with
different fitting algorithms, try the three pulse sequence
closer to resonance, and get T1 and T2 data for both
different viscosities of glycerine and for different param-
agnetic ion concentrations in water.
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In this experiment the phenomena of nuclear magnetic resonance is used to determine the magnetic
moments of the proton and fluorine nucleus. The magnetic moment of the proton is found to be
µ = (1.41 ± 0.14) × 10−23erg/gauss and the magnetic moment of the fluorine nucleus is found to
be µ = (1.33 ± 0.13) × 10−23erg/gauss. To measure the magnetic moments, radio frequency pulses
are applied to a sample in a large homogenous magnetic field. By tuning the applied frequency to
the resonance frequency of the sample, the magnetic moments can be calculated. Measurements are
performed to relate the spin-spin and spin-lattice relaxation times of glycerin to viscosity. Using the
same apparatus, the spin-spin and spin-lattice relaxation times are measured by applying sequences
of rf pulses to the samples. The relationship found between the viscosity of glycerin samples and
their relaxation times is within 2σ of the accepted value from literature.

1. INTRODUCTION

Individual particle spins are related to single particle
magnetic moments by a constant factor. Nuclear mag-
netic resonance is a technique to measure the magnetic
moment of nuclei in a sample. Nuclei are made up of
protons and neutrons, each of which are spin 1

2 particles.

For a particle with total spin 1
2 , spin in the +z direction

can be either + 1
2 or − 1

2 .
In nuclear magnetic resonance experiments a classical

approximation is used to understand the behavior of par-
ticle spins.

2. NUCLEAR MAGNETIC RESONANCE AND
RELAXATION TIMES

2.1. Theory of NMR and Classical Approximation

By considering an ensemble of spins in a sample we can
use the classical understanding of angular momentum to
approximate the behavior of many spins.

Each ensemble can be thought of as a total magnetic
moment of many spins. In an ensemble there can be
spins pointing in any direction, the resulting total mag-
netic moment vector can have components in any direc-
tion. By considering this ensemble of spins, the classical
understanding of angular momentum can be used.

The total magnetic moment of an ensemble of spins

is ~µ = γ~I, where γ is the gyromagnetic ratio for the

relevant nucleus and ~I is the total angular momentum
of the ensemble. In the classical approximation, placing
a particle with magnetic moment ~µ in a magnetic field
~B produces a torque τ , causing the magnetic moment to
precess about the direction of the applied magnetic field.

τ = ~µ× ~B0 (1)

∗Electronic address: joans@mit.edu

(a)Spin-Lattice Relaxation
Time

(b)Spin-Spin Relaxation
Time

FIG. 1: Illustration of effect of Spin-Lattice and Spin-Spin
relaxation times.

Since torque is d~I
dt , the Larmor frequency ω0 can be com-

puted to be

~ω0 = −γ ~B0 = −gµn
~B0

~
(2)

~ω0 is called the Larmor Frequency and is the resonance
frequency of the ensemble of spins in a magnetic field.
Finding the Larmor frequency allows the calculation of µ,
the magnetic moment of the nucleus. This resonance phe-
nomena also allows the measurement of the spin-lattice
relaxation time and the spin-spin relaxation time, called
T1 and T2 respectively. [1]

2.2. Relaxation Times

Nuclear magnetic resonance involves a sample placed
large constant magnetic field in the +ẑ direction, and a
small oscillating magnetic field applied primarily in the
x̂ direction. Subsequently, the oscillating field is turned
off, and the magnetic moments decay back to a thermal
state. The spin-spin and spin-lattice relaxation times are
measures of how the magnetic moments decay back into
the the xz plane.

The spin-lattice relaxation time is a measure of the
time it takes for spins to decay back to alignment with the

mailto:joans@mit.edu
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large magnetic field after they have been excited. A large
magnetic field in the +ẑ direction causes states where the
spins are aligned with the field to have a lower energy
configuration. As energy dissipates from the protons due
to electromagnetic interaction, more spins will become
aligned along the large magnetic field, as shown in Fig.
1(a).

The spin-lattice relaxation time, called T1 is the time
constant for this exponential decay.

The decay involved in spin-spin relaxation time does
not change the energy of the system. It is local and quan-
tum mechanical; the effect is between protons in nuclei
that are slightly out of alignment in the direction trans-
verse to the large magnetic field. The spin-spin interac-
tion of these unaligned particles causes increasing trans-
verse decoherence.

2.3. Relaxation Times and Viscosity

The relationship between viscosity and relaxation
times is measured. In viscous materials, to a zeroth
order approximation the molecules are closer together
than they are in a less viscous material. Both spin-
spin and spin lattice relaxation times are determined by
the coupling of magnetic fields in protons to magnetic
fields in the surrounding environment. Since molecules
are closer together in viscous samples, the interactions
will be stronger, the stronger interactions will return the
sample to equilibrium faster. The spin-spin relaxation
time and the spin-lattice relaxation time will decrease as
the viscosity increases.

3. EXPERIMENTAL SETUP

The necessary small magnetic field is applied by gen-
erating radio frequency pulses that produce a magnetic
field. The rf pulses are applied for different durations.
The pulse durations correspond to rotating the spins in
the sample by a specified angle. Combinations of pulses
of different frequency and duration are used to probe
characteristics of the sample.

3.1. Experimental Apparatus

This experimental apparatus has five main compo-
nents: two large permanent magnets, a radio frequency
pulse generator, a probe circuit that the sample sits in,
and a phase detector that mixes the input signal from the
frequency generator and the output Larmor frequency
signal from the sample together. An oscilloscope is used
to view and collect data.

The permanent magnets are used to produce the large
magnetic field, measured to be (1.768 ± 0.180) × 103G.
The error on this measurement takes into account 10%
inhomogeneity in the magnetic field. A sample, glycerin,

water or flourine, is placed in the probe circuit between
the two large magnets. The sample sits in a solenoid that
measures the magnitude of the magnetization in the +z
direction.

A set of tunable capacitors in the probe circuit are used
to ensure a visible signal. The probe circuit is placed un-
der the sample, and connected to the pulse generator and
filtering electronics by way of input and output cables.
The output signal from the proton spins is mixed with
the output signal from the pulse generator. The result
is beating between the two signals that is visible on the
oscilloscope.

4. DATA AND ANALYSIS

4.1. Method for Measuring Magnetic Moments

To calculate the magnetic moment of a sample, the
Larmor frequency of that sample is measured. The Lar-
mor frequency is related to the magnetic moment by

equation 2 and ~µ = γ~I. When a magnetic field is ap-
plied, the spins in the sample will precess with the said
frequency. When the input frequency on the pulse gener-
ator is the Larmor frequency, the beating terms vanish.

A sample of glycerin, C3H5(OH)3, is placed in the
solenoid to measure the magnetic moment of the proton
in hydrogen. Once the adjustable capacitors are tuned
to see a signal, a series of pulses are applied in order to
determine the correct duration for a pulse that rotates
the spins in the sample by 180◦.

The frequency on the frequency generator is tuned such
that there is a large free induction decay (FID) viewed
on the oscilloscope. The FID is an exponentially damped
sinusoid, due to the mixing of the NMR output signal
with the frequency input signal, as described above. The
time constant on the exponential damping is T1, the Spin-
Lattice relaxation time. The measurement of T1 will be
discussed in detail in Sec. 4.2. To calculate the magnetic
moment of the proton, a so-called 90◦ pulse is applied.
A 90◦ pulse is a pulse of duration t that rotates the spins
in the sample 90◦ around the z-axis, into the xy plane.

In order to determine t, we sweep through pulse du-
rations, from 1µs to 100µs. The 180◦ pulse produces no
FID, or a minimal amplitude FID. Under these condi-
tions, the spins of the protons will have no components
parallel to the solenoid. Since there is no parallel com-
ponent, there will be no emf induced in the solenoid, and
thus no signal. Once the 180◦ pulse is found, its duration
is halved to find a 90◦ pulse.

Once a 90◦ pulse is found, a series of repeating 90◦

pulses are applied to the sample, producing FIDs. The
frequency generator is tuned between each 90◦ pulse. As
the frequency approaches the Larmor frequency, the ef-
fect of beating between the mixed input and NMR out-
put signals approaches the resonance condition. The fre-
quency at resonance is recorded to calculate the magnetic
moment using Eq. 2.
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4.2. Method for Measuring T1

T1, the spin-lattice relaxation time is measured using
two different methods. The first method is to apply a
series of 2-pulse sequences. The first pulse in the sequence
has the duration determined previously to produce a 90◦

rotation. A time τ allows the spin-lattice relaxation to
occur, and is followed by a second 90◦ pulse.

The first pulse moves the spins into the xy plane. The
time τ allows the spins to decay back toward the z-axis.
Once the pulses have decayed, the second 90◦ pulse is
applied. This second pulse rotates the spins 90◦ about
the z − axis, such that the net magnetization vector is
positioned as in Fig 1(a). The spins are then allowed to
decay again, back to alignment in the z-axis.

Data is collected following the second pulse. This sig-
nal is an FID whose magnitude is proportional to the
magnitude of the magnetic moment vector that has de-
cayed completely into alignment with the z-axis. As tau
is varied, the amplitude of the FID should decrease, since
when more time elapses between the first pulse and the
second, more magnetization has decayed completely into
the ẑ direction. The result of this sequence will be a
descending decaying exponential, whose time constant is
T1. This pulse sequence is therefore useful for measuring
T1 for samples where T1 is expected to be short.

The second method used to measure T1 employs a 180◦

pulse, followed by a delay τ , and a 90◦ pulse. This pulse
sequence rotates the spins first 180◦ producing no FID.
The delay τ allows the spins to decay toward the z axis.
The 90◦ pulse rotates spins back toward the xy plane. As
in the previous pulse sequence, T1 is measured by varying
τ , and measuring the amplitude of the FID produced
after the last pulse. In this method, the amplitude of the
FID will be maximal when τ is larger than T1. In time τ ,
the magnetization is entirely aligned with the magnetic
field, causing the 90◦ pulse to rotate the spins back to
the xy plane. Once τ is sufficiently large the magnitude
of the FID stabilizes.

This method lends itself to measuring long T1s, as spins
must decay further, from 180◦ to 0◦, rather than from 90◦

to 0◦.

4.3. Method for Measuring T2

T2, the time constant for spin-spin relaxation is mea-
sured with one of two methods. The first method is a
simple pulse sequence, similar in nature to those used to
measure T1. This pulse sequence is a 90◦ pulse, followed
by a delay τ , followed by a 180◦ pulse.

A spin-echo occurs a time τ after the 180◦ pulse in this
sequence. The 90◦ pulse rotates the spins from the ẑ axis
up to the x̂ direction. A time τ passes, letting the spins
decay transversely, spreading out in the xy plane. The
180◦ pulse inverts the spins, but they continue moving in
the same direction. The result is that the spins recohere,
producing a signal again. As the spins decohere the signal

(a)T1 Measurement with 90◦ -τ
90◦ pulse sequence

(b)T1 Measurement with 180◦

-τ 90◦ pulse sequence

FIG. 2: Data collected by the two methods for measuring T1

induced in the solenoid becomes smaller, since there is
less magnetization in the ẑ direction. After the 180◦, the
spins rotate back through the xy plane while recohering.
The result is a signal that begins rising τ after the 180◦

pulse, reaches a maximum and falls again. This rising
and falling signal is the spin-echo.[2]

By varying τ and measuring the amplitude of the spin-
echo produced, a decaying exponential is plotted. The
exponential’s decay constant is T2[3].

The second method for measuring T2 is the Carr-
Purcell sequence. The Carr-Purcell sequence also begins
with a 90◦-τ -180◦ pulse sequence. Instead of repeating
this pulse sequence manually, varying τ , the Carr-Purcell
sequence uses a delay of 2τ , then another 180◦ pulse, then
another delay of 2◦, and so on. Each 2τ -180◦ pulse se-
quence allows the spins to further decohere in the trans-
verse plane. The result is a decaying exponential that
can be fit to produce values for T2.

4.4. Determining Magnetic Moments

The method for determining the magnetic moment of
the proton was described above. By tuning the frequency
generator, resonance was found to be ω0 = 7.52196 ×
106 rads . Converting this to a frequency and using µ =
ω0~
2B0

, µ = (1.41 ± 0.14) × 10−23 ergs
gauss . For the flourine

nucleus, ω0 = 7.0760×106 rads , giving µ = (1.33±0.13)×
10−23 ergs

gauss [4]. Each of these values differ by less than

one standard deviation from the accepted values[5].

4.5. Determining T1 and T2

T1 and T2 were measured for different concentrations of
glycerine, ranging from 100% glycerine to distilled water.
T1 and T2 were measured using the methods above, and
fit to the appropriate exponentials. Sample data is shown
in Figs. 2(a) and 3. Descending exponentials were fit
to f(x) = Ae−τ/T + B. Rising exponentials, like those
produced by the 180◦ - τ - 90◦ pulse sequence used to
measure T1 as in 2(b) were fit to f(x) = A(1 − 2e−

τ
T ) +

B. The data are shown in Table I. The error bars on



4

FIG. 3: Sample data collected for measurement of T2 for 86%
Glycerine sample. Data was collected using the Carr-Purcell
method for spin-echo measurement.

FIG. 4: Results plotted on a log-log scale for different vis-
cosities of glycerine. Blue data points are measurements of
T1, and red data points are measurements of T2.

both the T1 and T2 measurements were calculated by
adding in quadrature the standard deviation of each of
the three trials for each data point and the uncertainty in
the amplitude measurement from the oscilloscope. This
uncertainty was .3 mV.

4.6. Relationship between Relaxation Time and
Viscosity

By measuring relaxation times for samples of varying
viscosity, we establish that within the range measured
both T1 and T2 decrease as the viscosity of the sample
increases.

This plot has Pa per degree on the x axis. In order to
probe further range of viscosities, we intended to cool the

different concentration glycerine samples. By normaliz-
ing this graph by temperature, these samples would be
comparable at different temperatures. Due to time con-
straints we were unable to perform this procedure. By
fitting the log of the data for T1 and T2 to linear func-
tions, the slope of the power laws were obtained. Error
on each data point was taken to be the error produced
by the T1 and T2 fit functions. The relationship was fit
to a power law, as expected. The slope of the T1 fit was

Percent Glycerine T1 (ms) T2 (ms)

Distilled Water 2352.98 ± 154.12 -

40 1087.08 ± 199.90 -

60 549.42 ± 62.43 275.72 ± 17.85

80 55.57 ± 6.70 128.84 ± 8.54

86 37.03 ± 4.82 92.64 ± 7.94

98 9.84 ± 1.44 23.55 ± 1.71

100 7.31 ± 1.02 19.18 ± 1.74

TABLE I: T1 and T2 collected for different concentrations of
glycerine

found to be −0.91±0.04, the slope of the T2 fit was found
to be 0.43± 0.10. This varies from the Bloembergen and
Purcell of −1 measurement by 2σ in the case of T1. The
measurement for T2 is significantly less accurate because
data were unable to be obtained for very low concentra-
tions of glycerine.[6].

5. CONCLUSIONS

In conclusion, the values calculated for the magnetic
moment of the proton and flourine nucleus were µ =
(1.41 ± 0.14) × 10−23erg/gauss and µ = (1.33 ± 0.13) ×
10−23erg/gauss, respectively. These values are both
within σ of the accepted values.

The viscosity relaxation time relationship was found to
agree well with the relationship presented by Bloember-
gen in the 1954 paper[6]. The value for the relationship
between T1 and viscosity was within 2σ of that mea-
sured by Bloembergen. The T2 measurements were less in
agreement because fewer measurements were performed.

In order to confirm the behavior of high viscosity T1
and T2 relationships, in further experiment the differ-
ent concentrations of glycerine will be cooled in order to
change the viscosity of the samples.

[1] A. Melissinos, Techniques in Experimental Physics (Aca-
demic Press, 2003), chap. Magnetic Resonance Experi-
ments.

[2] E. Hahn, Spin echos (1950).
[3] H. Carr and E. Purcell, Phys. Rev. (1954).
[4] P. Bevington and D. Robinson, Data Reduction and Error

Analysis for the Physical Sciences (McGraw-Hill, 2003).
[5] D. R. Lide, ed., CRC Handbook of Chemistry and Physics

(2010), 91st ed.
[6] E. P. N. Bloembergen and R. Pound, Phys. Rev. (1948).
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We use the experimental technique of pulsed nuclear magnetic resonance (NMR) to measure
magnetic and spin relaxation properties of several different solutions. We measure the magnetic
moments of hydrogen and fluorine to be µH = (1.4099 ± .0048) × 10−26 Joules/Tesla and µF =
(1.4094± .0056)× 10−26 Joules/Tesla, respectively. The effect of viscosity on spin-lattice relaxation
time, T1, and spin-spin relaxation time, T2, is determined by testing various aqueous glycerine
solutions. Data was also taken for solutions with varying paramagnetic ion (Fe+++) concentrations,
however low statistics, among other factors, limited the analysis. For spin-spin relaxation, the
negative linear relationship is confirmed between the natural logarithms of viscosity and T2.

I. INTRODUCTION

The natural phenomenon of magnetic resonance arises
in systems due to the interplay of magnetic moments
and angular momentum. Though the magnetic resonance
of atoms was known and studied by many, including I.
I. Rabi and collaborators in 1939, the nucleus was not
probed until late 1945. Nearly simultaneously, F. Bloch
and E. M. Purcell independently discovered nuclear mag-
netic resonance (NMR), in which a magnetic field breaks
the energy degeneracy of different spin states and tran-
sitions between these states may be observed [1].

E. Hahn later made the discovery of “spin echoes” us-
ing pulsed NMR techniques, which led to the invention of
a plethora of pulse sequences to measure magnetic prop-
erties of atoms. Two of these properties are the spin-
lattice relaxation time T1, a measure of how long it takes
an ensemble of spins to reestablish the Boltzmann equi-
librium, and spin-spin relaxation time T2, the character-
istic time for the transverse magnetization to decay.

In this experiment, we study each sample placed in
the field of a permanent magnet by applying pulses of a
transverse RF magnetic field and interpreting the effects
on the overall magnetization.

II. THEORY

We follow the general discussion outlined by [1] with
additional material from [2].

A. Larmor Spin Precession

A spin 1/2 particle with magnetic moment ~µ = γ~S in a
static magnetic field, ~B = B0 ~nz solely in the z-direction,
has a Hamiltonian,

Ĥ = −~µ · ~B = −γB0Ŝz, (1)

∗Electronic address: woodson@mit.edu
†Electronic address: campsoup@mit.edu

where Ŝz is the z-direction spin operator and γ = gµN/~
is specific to the

Then, we can define the vector ~J = (〈Ŝx〉, 〈Ŝy〉, 〈Ŝz〉)
of the expectation values of the spin operators, which be-
haves like the classical angular momentum vector. Par-
ticularly, we know that torque is related to angular mo-
mentum by,

~τ = ~µ× ~B = γ( ~J × ~B) =
d ~J

dt
. (2)

Classical gyroscopic precession yields the solution of
equation 2,

~ω0 = −

∣∣∣∣∣ d ~J/dt~J × ~nz

∣∣∣∣∣⇒ ω0 = γB0. (3)

This quantity is called the Larmor frequency and it is the
rate at which the classical vector J precesses about the
constant magnetic field; see figure 1 for an illustration.

   

J
0

z

x
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B



FIG. 1: Larmor precession of the classical spin vector J about
the constant magnetic field B. Modified from [1]

The preceding discussion is sometimes referred to as
the classical description of NMR. We may also view the
quantum picture of the same phenomenon in a slightly
different situation.

mailto:woodson@mit.edu
mailto:campsoup@mit.edu
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B. Nuclear Magnetic Resonance

If we apply static and time-dependent circularly-
polarized orthogonal magnetic fields,

~B(t) = (B1 cosωt,−B1 sinωt,B0), (4)

we see that the Hamiltonian does not commute with itself
at different times: [Ĥ(t1), Ĥ(t2)] 6= 0 for some t1 6= t2 [2].
One implication of this is that we cannot use the unitary
time evolution operator Û = e−iĤt/~ to find the form of
a state at later times. However, we can employ a basis
transformation into the frame rotating about the z-axis
with angular frequency ω, the driving frequency of the
applied magnetic field.

First, we begin with the Hamiltonian in the lab frame
and manipulate it,

Ĥ = −γB0Ŝz − γB1(Ŝx cosωt− Ŝy sinωt)

= eiωtŜz/~(−γB0Ŝz − γB1Ŝx)e−iωtŜz/~, (5)

so that we achieve the form Ĥ = Û†ĤRÛ , where Û is
a change of basis unitary transformation and ĤR is the
Hamiltonian in the new, rotating frame. Its form dic-
tates that this frame of reference has an effective mag-
netic field,

~Beff = (B0 −
ω

γ
)~nz +B1~nx, (6)

which gives rise to the resonance condition of ω = ω0 =
γB0, the Larmor frequency.

NMR techniques, including the use of pulsed radio fre-
quency (RF) signals, have been used to make a wide va-
riety of measurements, one of the most prevalent is that
of the spin relaxation times, T1 and T2.

C. Spin-Lattice and Spin-Spin Interactions

Several factors contribute to the behavior of the mag-
netization of a large ensemble of spins when the magnetic
field of equation 4 is present, including spin-lattice inter-
actions, spin-spin interactions, and magnetic field inho-
mogeneity.

The fact that the magnet is not completely uniform
causes individual particles in different locations to pre-
cess at slightly different frequencies so they gradually de-
cohere, that is get out of phase with one another.

The spin-lattice relaxation time T1 is associated with
the approach to thermal equilibrium. In other words, it is
the characteristic decay time for the return to the Boltz-
mann distribution. It is also a measure of how quickly
the longitudinal magnetization returns to equilibrium.

On the other hand, the spin-spin relaxation time T2

is associated with the transverse magnetization rate of
decay. It is a measure of how fast the spins recohere and
decohere in the transverse plane. Since T1 is related to
the “cooling” of the sample, whereas T2 is only related

to the coupling of spins between magnetized particles,
T1 must be greater than T2; A particle which has been
returned to equilibrium with the static magnetic field
(in the z-direction) cannot contribute to the transverse
magnetization.

III. EXPERIMENTAL DESIGN

A. Setup

First, we take a sample in a small test tube and sus-
pend it between two strong magnets inside of a solenoid.

15 MHz
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Bandpass
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FIG. 2: Block diagram of the experimental setup created by
S. Campbell.

We introduce an RF sinusoid waveform from a pulse
generator into the signal chain, which is split, with half
of it directed to one of the inputs (the reference) of the
phase detector and the other half sent through an RF
switch, which is controlled by the digital pulse program-
mer (DPP). The DPP allows the experimenter to manip-
ulate the number of, delay between, and time duration of
pulses. After the switch, the pulse is amplified and sent
to the sample, which is a part of the probe circuit.

The probe circuit is composed of two tunable capaci-
tors, one in series with the sample adjusted for impedance
matching, while the other is in parallel with the combi-
nation of the capacitor and sample and it is tuned to the
frequency of the input RF signal. The RF pulse enters
the circuit, permeates the sample, and (usually) causes
a precessing magnetization, which changes the magnetic
flux in the solenoid over time, inducing a current, which
can be detected. Since both the input pulse and output
signal traverse the same circuit path, the power ampli-
fier and signal preamplifier must be properly impedance
matched. A crossed pair of diodes ground the high RF
voltages that arrive with the transmitter is on, while pick-
ing out the weaker resultant signal when received.

The signal output from the probe is amplified and then
input to the phase detector and mixed with the refer-
ence signal. The resulting signal, comprised of “beats”
between the two very close frequencies is displayed on
the oscilloscope, which triggers on the original input RF
pulses.
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B. Execution

C. Determination of Pulse Widths

We first determined the pulse widths in time corre-
sponding to π and π/2-pulses. Originally, we set the RF
pulse generator to a specific amplitude setting: Vpp =
2.00 V and then varied the delay setting on the DPP
(for a single pulse sequence) until we minimized the free
induction decay (FID) signal following the pulse. This
method yielded a value of 48 µs for the π-pulse, which
was cut in half to determine the π/2-pulse width. How-
ever, realizing that we had finer control over the ampli-
tude of the RF field with the pulse generator, we instead
tuned the digital pulse programmer to generate a 50 µs
pulse width and minimized the FID signal by varying Vpp
to achieve the π-pulse.

D. Measurement of T1

We utilized the three-pulse method pioneered by I.
Chuang and R. Sarpeshkar to measure T1 for four differ-
ent aqueous glycerine solutions: 88% to 100% glycerine
by weight in steps of 4%. An example of raw data for
this pulse sequence is shown in figure 3.
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FIG. 3: Raw data for the calculation of T1 using the three-
pulse sequence. Data is shown for an aqueous glycerine solu-
tion. Figure created by S. Campbell

We varied τ differently for each compound, such that
we took about 10 data points for each solution over a
reasonable range, depending on the expected value of T1

for the particular sample.

E. Measurement of T2

The Carr-Purcell pulse sequence is described in detail
in the Appendix. We used this sequence, which can be

described as π/2, τ, [π, 2τ ]N , on the same aqueous glycer-
ine solutions, keeping τ fixed at 5 ms, while capturing the
entire spin echo train. We used the oscilloscope’s screen
capture capability to read out a bitmap image, like in
figure 4 of the signals, from which we later extracted
the signal amplitudes. Additionally, we took measure-
ments of three different concentrations of paramagnetic
ions, 1016, 1017, and 1018 Fe+++ ions/cc, but some of
the data was obscured due to a mistake in the readout
process.

FIG. 4: An oscilloscope screen shot displaying a Carr-Purcell
train for an aqueous glycerine solution.

IV. DATA AND ERROR ANALYSIS

Data reduction and analysis was done using Matlab
with linear and nonlinear fit scripts provided by the Ju-
nior Lab staff.

A. Systematic and Statistical Error Analysis

Sources of the systematic error include the oscillo-
scope’s technical resolving limit, the pixel resolution
of the bitmap images for T2 measurements, the non-
uniformity of the magnetic field, and the general vari-
ance in signal amplitude. These errors, where appropri-
ate, were added in quadrature to calculate error bars for
the plots in the following sections.

The oscilloscope precision was taken to be ± 0.6 mV
[3]. In addition, by taking multiple screen shots of a
spin echo from a sample of 88% glycerine subjected to
a π/2, π pulse sequence and observing the variance in
these, we determined the statistical fluctuations to be
± 11.25% of the voltage amplitude (the standard devi-
ation of the five measurements). Finally, we estimated
the pixel resolution of the bitmap screen shots to be ± 2
pixels, corresponding to ± 6.5 mV.
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B. Static Magnetic Field and Magnetic Moments

We took measurements of the static magnetic field, the
precession (Larmor) frequency of hydrogen and fluorine,
and the magnetic moments of hydrogen and fluorine us-
ing glycerine and hexafluorobenzene, respectively.

By minimizing the FID which occurs in coincidence
with resonance, we found the precession frequencies for
hydrogen and fluorine to be νH = 7.52203± 0.0002 MHz
and νF = 7.52224 ± 0.00005 MHz. Using the relation
found in equation 3, it follows that,

µH = (1.4099± .0048)× 10−26 Joules/Tesla
µF = (1.4094± .0056)× 10−26 Joules/Tesla.

From these results we determined of the strength of
the magnetic field,

B0 = 1768± 1 Gauss.

C. Effect of Viscosity on Relaxation Times

For both relaxation times, we fit exponentials to the
data as functions of the parameter τ , the delay between
pulses.

To determine spin-lattice relaxation time, T1, the
three-pulse method measures the proportion of longitudi-
nal magnetization recovered by time τ by creating a spin
echo proportional to the recovered population. Thus, we
expect an exponentially increasing amplitude for increas-
ing delay between pulses, [4]

M(τ) = A(1− 2e−τ/T1). (7)

We performed a least-squares non-linear fit to equation
7 for each of the aqueous glycerine solutions. Contrast-
ingly, for spin-spin relaxation time, we expect an expo-
nentially decreasing relationship, with time constant T2,
when we measure the spin echoes created by the Carr-
Purcell method. Therefore, we fit to a different exponen-
tial :

M(n2τ) = Ae−n2τ/T2 . (8)

where M(n2τ) represents the amplitude of the nth spin
echo which occurs at time n2τ

In the non-linear fit to extract T2, comparing equations
A.1 (from the Appendix) and 8, we ignored an exponen-
tial term that is third order in τ . The lack of or inacces-
sibility of information regarding the diffusion coefficients
for our samples and the inhomogeneity of the magnetic
field made including this term unfeasible. This may have
contributed to the apparent structure in the residuals
seen in figure 5. However, it is encouraging that the re-
duced chi-square, χ2 = 0.081, is small, indicating a good
least-squares fit.

There were more difficulties in deriving the spin-lattice
relaxation time. Each of the four data sets had fits with
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FIG. 5: The results of the exponential decay fit for 92% glyc-
erine. Note the apparent structure in the residuals and the
χ2

R = 0.081.

% Glycerine Viscosity T1 T2

by weight [Cp/mPas] [ms] [ms]

88 175 20.29 ± 1.04 80.16 ± 4.15
92 310 18.12 ± 1.17 54.74 ± 2.95
96 624 19.09 ± 0.60 33.21 ± 2.40
100 1410 8.90 ± 0.60 19.93 ± 2.01

TABLE I: This table displays the extracted time constant
from the exponential fits to the eight data sets. Errors are a
result of propagating the voltage errors and the χ2

R = 0.067 .

discernable structure in the residuals. We conclude that
there must be other effects that are not accounted for in
formula 7.

The final results for our measurements of T1 and T2

are tabulated in table IV C. Viscosities were read off of
or extrapolated from a reference table in [4]. A log-log
plot of T2 versus viscosity of solution is shown in figure
6.

Though we also took data for different paramagnetic
ion concentrations, the data did not follow the trend we
expected from the literature [5]. More fundamentally,
the spin echo amplitudes for a single concentration, did
not follow the exponential decay expected, making an
exponential fit procedure highly suspect. This may due
to the fact that we used τ = 5 ms, when we expected
only slightly larger T2 values. This means we could only
see a small portion of the decay and due to the large
uncertainties inherent in the measurement, we could not
fit the data successfully.
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FIG. 6: A log-log plot in base e displaying the relationship
between the spin-spin relaxation constant and the viscosity of
the sample.

V. CONCLUSIONS

Our findings for the dependence on viscosity of the
spin-spin relaxation time T2 are in good agreement with
Bloembergen, et al. Even the slope of the line, which for
them is approximately − 2

3 while ours is −0.68± 0.05, is
reasonably consistent. [5]. This indicates the power law
relationship between viscosity and T2 that we measured
is very similar to established findings.

In addition to these findings, our measured magnetic
moment of hydrogen is in good agreement with the ac-
cepted value, however the value we measured for fluorine
was substantially different and in fact, very close to the
value we observed in hydrogen.

The inversion of the expected relationship between T1

and T2, i.e. that T1 ∼> T2, may indicate that T1 is actually
greater than the values we report in IV C.

The effects delineated here, especially the residuals ap-
parent in the fits, warrant further investigation. Future
research will hopefully yield better measurements of T1,
a good estimation of the magnetic field variation, and
overall better agreement with the theory.

Appendix: Spin Echoes and Carr-Purcell

Hahn’s discovery of spin echoes invigorated the study
of NMR, by demonstrating that the magnetic field in-
homogeneity may be disregarded in the measurement of
T2. One way to generate a spin echo is by applying two
pulses of fixed widths and delay, near Larmor resonance
ω ≈ ω0. This is known as a π/2, τ, π pulse sequence. The
following discussion ignores T1 and T2 effects.

A π/2-pulse refers to a pulse that lasts a time tπ/2
such that ωtπ/2 = γB0tπ/2 = π/2 and a π-pulse has
double duration. Suppose the transverse field, in the
+x-direction is applied for a time tπ/2, then the mag-
netization vector of the sample (initially pointing in the
+z-direction), is rotated down into the x-y plane, say,

along the −y-direction. By waiting a small time τ , the
magnetization precesses about the static field, staying in
the transverse plane and rotating by an angle θ = γ∆Bτ ,
where ∆B = B1 −B0.

A π-pulse applied at time τ (B1 again in the +x-
direction) reverses the phases of the magnetization of in-
dividual particle, that is, those spins that were ahead by
a certain phase, now lag by that same phase. Since the
“advance” of the spins is still in the same direction, af-
ter a time τ , the spins will have completely re cohered,
restoring the state that occured directly following the
first π/2-pulse, except the magnetization is in the +y-
direction. This means that the same FID signal is in-
duced as if the π/2-pulse just happened. Additionally
the form of the signal just before time 2τ is the exact
mirror image of the decay afterwards.

We can account for T1 and T2 effects by noting that
during the first τ interval, the spin vector will rise expo-
nentially (with time constant T1) back up to the z-axis.
Thus, the size of the magnetization in the x-y plane at
time τ+ is smaller by that amount. During the next τ in-
terval, the component of magnetization in the x-y plane
will continue to decay with time constant T2 and as a re-
sult, we see the size of magnetization producing the echo
signal will obey [6]

M(2τ) = M0e
−2τ/T2

Further, Carr and Purcell showed that diffusion leads
to a decay of the spin echo amplitude M , given by

M(2τ) = M0 exp
[
−Dγ2 ∂B

∂z

2 2
3
τ3

]
exp (−2τ/T2)

≡ M0α

where we have assumed B1 − B0 = z
(
∂B
∂z

)
. If we apply

yet another π-pulse 2τ after the first, we see that the next
spin echo will be attenuated again by the same factor
α. Proceeding by induction, we see that if we apply a
“Carr-Purcell” pulse sequence: π/2, τ, [π, 2τ ]N , then we
see a train of spin echoes, such that the amplitude of the
nth spin echo obeys:

M(n2τ) = M0α
n

= M0 exp
[
−γ ∂B

∂z

2

D
1
3

(n2τ)τ2

]
× exp (−n2τ/T2) (A.1)

This formula makes it possible to measure T2 as in this
experiment without worrying too much about the diffu-
sion and inhomogeneity terms.
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